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Abstract
We provide a generalization of the horizontality condition of the usual superfield
approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism to obtain the
(anti-)BRST symmetry transformations for all the fields of a four (3 + 1)-
dimensional interacting 1-form U(1) gauge theory (QED) within the framework
of the augmented superfield formalism. In the above interacting gauge theory,
there is an explicit coupling between the 1-form U(1) gauge field and the
complex scalar fields. This interacting gauge field theory is considered on
the (4, 2)-dimensional supermanifold parametrized by the four even spacetime
variables xµ (with µ = 0, 1, 2, 3) and a pair of odd Grassmannian variables
θ and θ̄ . The above nilpotent (anti-)BRST symmetry transformations are
obtained due to the imposition of a gauge (i.e. BRST) invariant restriction on
the appropriate superfields defined on the (4, 2)-dimensional supermanifold.
This restriction owes its origin to a pair of (super) covariant derivatives and their
intimate connection with the 2-form (super) curvatures. The results obtained,
due to the application of the horizontality condition alone, are contained in the
results deduced due to the imposition of the above gauge invariant restriction.

PACS numbers: 03.70.+k, 11.15.−q, 12.20.−m

1. Introduction

The usual superfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism [1–6]
provides a deep connection between some of the key mathematical properties associated
with the (anti-)BRST symmetries (as well as corresponding generators) and the partial
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derivatives w.r.t. the Grassmannian variables of the superspace coordinates that characterize the
(D, 2)-dimensional supermanifold on which a given D-dimensional p-form (p = 1, 2, 3 . . .)

(non-)Abelian gauge theory is considered. The above (D, 2)-dimensional supermanifold is
parametrized by the number D of the commuting spacetime variables xµ (with µ = 0, 1,

2 . . . , D − 1) and a pair of anticommuting (i.e. θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0) Grassmannian
variables θ and θ̄ . On this supermanifold, a (p+1)-form super curvature is constructed with the
help of the super exterior derivative d̃ = dxµ∂µ + dθ∂θ + dθ̄∂θ̄ (with d̃2 = 0) and the super p-
form gauge connection Ã(p). This is subsequently equated, due to the well known horizontality
condition [1–6], to the ordinary (p + 1)-form curvature defined on the D-dimensional ordinary
spacetime manifold with the help of the ordinary exterior derivative d = dxµ∂µ (with d2 = 0)
and the ordinary p-form gauge connection A(p) = 1

p! (dxµ1 ∧ dxµ2 · · · ∧ dxµp)Aµ1µ2...µp

that defines the p-rank antisymmetric tensor gauge potential of the theory. The celebrated
horizontality condition, christened as the soul-flatness condition in [7], mathematically
amounts to setting equal to zero all the Grassmannian components of the (p + 1)-rank
(anti)symmetric tensor that constitutes the (p + 1)-form super curvature defined on the above
supermanifold.

The above horizontality condition has been extensively exploited to derive the nilpotent
(anti-)BRST symmetry transformations for the gauge field and corresponding fermionic
(anti-)ghost fields of the four (3 + 1)-dimensional (4D) 1-form (i.e. A(1) = dxµAµ) non-
Abelian gauge theory. To be more specific, this 4D non-Abelian theory is first considered
on a (4, 2)-dimensional supermanifold parametrized by the four spacetime (even) coordinates
xµ(µ = 0, 1, 2, 3) and a pair of Grassmannian (odd) variables θ and θ̄ . An appropriate
2-form super curvature F̃ (2) = d̃Ã(1) + Ã(1) ∧ Ã(1) is constructed with the help of the super
exterior derivative d̃ and super 1-form connection Ã(1). This is equated to the ordinary 2-form
curvature F (2) = dA(1) + A(1) ∧ A(1) constructed with the help of the ordinary exterior
derivative d = dxµ∂µ and ordinary 4D 1-form connection A(1). This equality (i) leads
to the derivation of nilpotent (anti-)BRST symmetry transformations, and (ii) provides the
geometrical interpretation for the nilpotent (anti-)BRST charges (and the nilpotent symmetry
transformations they generate) in the language of the translational generators along the
Grassmannian directions of the (4, 2)-dimensional supermanifold. However, the latter type
of geometrical interpretations remain confined only to the gauge field and the corresponding
(anti-)ghost fields of the theory. The matter fields of the interacting 1-form non-Abelian
gauge theory remain untouched in the framework of the usual superfield formulation (with the
theoretical arsenal of horizontality condition alone).

The above trick has also been exploited in the context of the derivation of the nilpotent
(anti-)BRST symmetry transformations for the 2-form (i.e. A(2) = 1

2! (dxµ ∧ dxν)Bµν) non-
interacting Abelian gauge theory in 4D where a 3-form super curvature F̃ (3) = d̃Ã(2),
constructed with the help of the super exterior derivative d̃ and super 2-form connection
Ã(2), is equated to the ordinary 4D 3-form F (3) = dA(2) constructed with the help of the
ordinary exterior derivative d and 2-form ordinary connection A(2). As expected, here too, one
obtains the nilpotent (anti-)BRST transformations for the second rank antisymmetric gauge
field Bµν and the corresponding (anti)commuting (anti-)ghost fields of the theory. Of course,
the (anti-)ghost fields turn out to be bosonic as well as fermionic in nature for the 2-form
Abelian gauge theory. Even for this Abelian theory, the matter fields are not discussed at all
in the framework of the usual superfield approach to BRST formalism.

In a recent set of papers [8–17], the above horizontality condition of the usual superfield
approach has been consistently extended so as to derive the nilpotent (anti-)BRST symmetry
transformations for the matter fields together with the above nilpotent transformations
associated with the gauge and (anti-)ghost fields. This extended version of the superfield



A generalization of the horizontality condition in the superfield approach to nilpotent symmetries for QED 4879

formalism has been christened as the augmented superfield formalism where, in addition to
the horizontality condition, some other physically interesting restrictions are imposed on the
superfields of the appropriately chosen supermanifold. In the latter category of restrictions,
mention can be made of the equality of (i) the conserved currents corresponding to the gauge
symmetries [8–10, 13], (ii) any conserved quantities for the reparametrization invariant theories
[11, 12], and (iii) the gauge invariant quantities owing their origin to the covariant derivatives
on the appropriately chosen superfields [14–17]. One obtains logically consistent nilpotent
(anti-)BRST symmetry transformations for all the fields due to the application of the restrictions
(i) and (ii). However, the application of the restriction (iii) on the superfields (defined on the
appropriately chosen supermanifolds) leads to the derivation of mathematically exact nilpotent
(anti-)BRST symmetry transformations for all the fields. In a very recent set of papers
[18, 19], the nilpotent (anti-)BRST symmetry transformations for all the fields of the interacting
4D (non-)Abelian gauge theories (with the Dirac fields as the interacting matter fields) have
been derived from a single restriction on the appropriate superfields of the supermanifold.
These attempts have been made to generalize the horizontality condition to obtain all the
nilpotent (anti-)BRST symmetry transformations for all the fields of a given gauge theory
without spoiling the geometrical interpretations of some of the key properties associated with
the nilpotent (anti-)BRST symmetries (and corresponding nilpotent charges) that are provided
by the horizontality condition alone. All the above mathematically consistent extensions of
the usual superfield formalism are called by us as the augmented superfield approach to BRST
formalism.

The central theme of our present paper is to demonstrate that the ideas of the augmented
superfield formalism, with a single gauge (i.e. BRST) invariant restriction on the appropriately
chosen superfields (defined on a suitable supermanifold) [18, 19], can be extended to derive
the on-shell as well as off-shell nilpotent (anti-)BRST symmetry transformations for all the
fields of an interacting four (3 + 1)-dimensional U(1) gauge theory where there is an explicit
coupling between the U(1) gauge field and the charged complex scalar fields. We show
that all the results, obtained due to the application of the horizontality condition of the usual
superfield formulation, are contained in the results deduced by exploiting our present gauge
(i.e. BRST) invariant restriction on the appropriately chosen superfields. On top of it, the
appropriate modifications of our present restriction on the superfields (defined on a suitably
chosen supermanifold) provides a precise way to derive the on-shell nilpotent (anti-)BRST
transformations for all the fields (including the matter fields) of the theory in a separate and
independent manner. It should be re-emphasized that the horizontality condition alone does
not shed any light on the derivation of the nilpotent symmetry transformations associated
with the matter fields of any arbitrary interacting gauge theory in any arbitrary dimension of
spacetime. Thus, our present endeavour is an important step in the direction to generalize the
horizontality condition of the usual superfield approach to a more general condition on the
appropriately chosen superfields. Our present Abelian gauge (i.e. BRST) invariant restriction
owes its origin to a pair of (super) covariant derivatives, their operation on matter (super)
fields and their intimate connection with the Abelian (super) curvature 2-forms defined on the
appropriately chosen (super) spacetime manifolds. In our present investigation, as a warm-up
exercise, we first derive the on-shell nilpotent BRST and anti-BRST symmetry transformations
for all the fields of the present interacting U(1) gauge theory by invoking the chiral and anti-
chiral superfields defined on the (4, 1)-dimensional super sub-manifolds (cf section 3). Later
on, we merge together these superfields to obtain the general (4, 2)-dimensional superfields
for the derivation of the off-shell nilpotent (anti-)BRST symmetry transformations together
for all the fields of our present gauge theory from a single restriction on the matter superfields
(cf section 4). Thus, our main results are contained in sections 3 and 4.
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The compelling reasons behind our present investigation are primarily four in number.
First and foremost, it is important to generalize our ideas of the augmented superfield approach
to BRST formalism [18, 19] to a new field theoretical system where a single gauge (i.e. BRST)
invariant restriction on the superfields (defined on the appropriately chosen supermanifolds)
leads to the derivation of the nilpotent (anti-)BRST symmetry for all the fields of the interacting
gauge theory. In fact, the above ideas have been found to be true for the derivation of the
nilpotent symmetry transformations in the cases of (i) an interacting 4D Abelian U(1) gauge
theory where there is an explicit coupling between the gauge field and the Dirac (matter) fields,
and (ii) an interacting 4D non-Abelian gauge theory where the Noether conserved current,
constructed with the help of Dirac fields, couples to the SU(N) non-Abelian gauge field. In
our present endeavour, we exploit primarily the same restriction for a new field theoretic model
where there is a coupling between the U(1) gauge field and the Noether conserved current
constructed with the help of the charged complex scalar fields and the gauge field itself. Thus,
our present investigation is essential to put our earlier ideas on a firmer ground. Second, in our
earlier works [13, 14], connected with the superfield approach to the derivation of nilpotent
symmetry transformations for the complex scalar fields, we exploited two separate restrictions
on the (4, 2)-dimensional supermanifold which included the horizontality condition of the usual
superfield formalism as one of the restrictions. Our present endeavour is more economical
and aesthetically more appealing because we derive all the nilpotent (anti-)BRST symmetry
transformations from a single gauge invariant restriction. Third, the single restriction exploited
in our present investigation is physically more appealing because this restriction is a gauge (i.e.
BRST) invariant condition on the suitably chosen superfields. In contrast, the horizontality
condition is intrinsically a gauge covariant restriction on the gauge superfield. Finally,
our present field theoretical model is (i) useful in the context of gauge theory of standard
model, and (ii) different from the interacting 4D (non-)Abelian gauge theories with fermionic
Dirac fields. For instance, the present model allows an inclusion of a gauge (i.e. BRST)
invariant potential with a quartic renormalizable self-interaction term. Such kind of interaction
term is forbidden for the fermionic Dirac fields in interaction with the (non-)Abelian gauge
fields.

The contents of our present paper are organized as follows. In section 2, we recapitulate
the key points of the nilpotent (anti-)BRST symmetry transformations for all the fields of
an interacting U(1) gauge theory in the Lagrangian formulation where there is an explicit
coupling between the U(1) gauge field and the complex scalar fields. Section 3 is devoted
to the derivation of the on-shell nilpotent (anti-)BRST symmetry transformations for the
appropriate fields of the above interacting gauge theory in the framework of the superfield
formulation. In this derivation, the (anti-)chiral superfields are invoked for the gauge invariant
restriction. The above specific superfields are defined on the (4, 1)-dimensional (anti-)chiral
super sub-manifold of the general (4, 2)-dimensional supermanifold. The material of section 4
deals with the derivation of the off-shell nilpotent (anti-)BRST symmetry transformations for
all the fields of the theory by exploiting a gauge invariant restriction on the general superfields
of the (4, 2)-dimensional suepermanifold. An alternative version of this section is presented
in the appendix. Finally, in section 5, we make some concluding remarks and point out a few
future directions for further investigations.

2. (Anti-)BRST symmetries: Lagrangian formalism

To provide a brief synopsis of the salient features of the off-shell as well as on-shell nilpotent
(anti-)BRST symmetries, we focus on the Lagrangian density of an interacting four (3 + 1)-
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dimensional2 (4D) U(1) gauge theory which describes a dynamically closed system of the
charged complex scalar fields and U(1) gauge field. The (anti-)BRST invariant Lagrangian
density of the above system, in the Feynman gauge, is [7, 20–22]

Lb = − 1
4FµνFµν + D̄µφ∗Dµφ − V (φ∗φ) + B(∂ · A) + 1

2B2 − i∂µC̄∂µC

≡ 1
2 (E2 − B2) + D̄µφ∗Dµφ − V (φ∗φ) + B(∂ · A) + 1

2B2 − i∂µC̄∂µC (2.1)

where V (φ∗φ) is the potential describing the quadratic and quartic interactions between the
complex scalar fields φ and φ∗3. The covariant derivatives on these fields, that are endowed
with the electric charge e, are as given below

Dµφ = ∂µφ + ieAµφ D̄µφ∗ = ∂µφ∗ − ieAµφ∗. (2.2)

In the Lagrangian density (2.1), the Nakanishi–Lautrup auxiliary field B is required to
linearize the gauge-fixing term − 1

2 (∂ · A)2. The Faddeev–Popov (anti-)ghost fields (C̄)C

(with C2 = C̄2 = 0, CC̄ + C̄C = 0) are needed in the theory to maintain the ‘quantum’
gauge (i.e. BRST) invariance and unitarity together at any arbitrary order of perturbative
calculations (see, e.g., [24]). In the sense of the basic requirements of a canonical field theory,
the Lagrangian density Lb describes a dynamically closed system of all the fields φ, φ∗, C, C̄

and Aµ (see, e.g., [23]). It will be noted that the gauge field Aµ couples to the conserved
matter current J (c)

µ ∼ (φ∗Dµφ − φD̄µφ∗) to provide the interaction between Aµ and matter
fields φ and φ∗. This statement can be succinctly expressed as

Lb = − 1
4FµνFµν + ∂µφ∗∂µφ − ieAµ[φ∗∂µφ − φ∂µφ∗] + e2A2φ∗φ

−V (φ∗φ) + B(∂ · A) + 1
2B2 − i∂µC̄∂µC. (2.3)

The conservation of the matter current J (c)
µ can be easily checked by exploiting the equations of

motion DµDµφ = −(∂V/∂φ∗), D̄µD̄µφ∗ = −(∂V/∂φ) derived from the above Lagrangian
densities. These Lagrangian densities respect the following off-shell nilpotent

(
s2
(a)b = 0

)

and anticommuting (sbsab + sabsb = 0) (anti-)BRST symmetry transformations s(a)b
4 for the

matter fields, gauge field and the (anti-)ghost fields, namely;

sbAµ = ∂µC sbC = 0 sbC̄ = iB sbφ = −ieCφ

sbφ
∗ = +ieφ∗C sbB = 0 sbB = 0 sbE = 0 sb(∂ · A) = �C

sabAµ = ∂µC̄ sabC̄ = 0 sabC = −iB sabφ = −ieC̄φ

sabφ
∗ = +ieφ∗C̄ sabB = 0 sabB = 0 sabE = 0 sab(∂ · A) = �C̄.

(2.4)

The key points to be noted, at this stage, are (i) under the (anti-)BRST transformations,
it is the kinetic energy term

(− 1
4FµνFµν

)
of the gauge field Aµ which remains invariant.

2 We adopt here the conventions and notations such that the 4D flat Minkowski metric is ηµν = diag(+1, −1,−1,−1)

and � = ηµν∂µ∂ν = (∂0)
2 − (∂i )

2, F0i = ∂0Ai − ∂iA0 = Ei ≡ E, Fij = εijkBk, Bi ≡ B = 1
2 εijkFjk, (∂ · A) =

∂0A0 − ∂iAi where E and B are the electric and magnetic fields, respectively and εijk is the totally antisymmetric
Levi-Civita tensor defined on the 3D (space) sub-manifold of the 4D spacetime manifold. Here the Greek indices:
µ, ν, λ . . . = 0, 1, 2, 3 correspond to the spacetime directions and Latin indices i, j, k, . . . = 1, 2, 3 stand only for
the space directions on the Minkowski spacetime manifold.
3 This potential can be chosen in the quartic polynomial form as V (φ∗φ) = α2φ∗φ + β(φ∗φ)2 for a renormalizable
quantum field theory. Here α and β are the parameters which could be chosen in different ways for different purposes
(see, e.g., [23]). The key point to be noted is the fact that this potential remains invariant under the U(1) gauge
transformations as well as the (anti-)BRST symmetry transformations.
4 We follow here the notations and conventions adopted in [21, 22]. In fact, the (anti-)BRST prescription is to replace
the local gauge parameter by an anticommuting number η and the (anti-)ghost fields (C̄)C which anticommute (i.e.
ηC + Cη = 0, ηC̄ + C̄η = 0) and commute with all the fermionic (i.e. CC̄ + C̄C = 0, C2 = C̄2 = 0, etc) and bosonic
fields, respectively. In its totality, the nilpotent (δ2

(A)B = 0) (anti-)BRST transformations δ(A)B are the product (i.e.

δ(A)B = ηs(a)b) of η and s(a)b where s2
(a)b = 0.
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This statement is true for 1-form (non-)Abelian gauge theories. For the above U(1) gauge
theory, as it turns out, it is the curvature term Fµν itself that remains invariant under the
(anti-)BRST transformations. (ii) In the mathematical language, the (anti-)BRST symmetry
transformations owe their origin to the exterior derivative d = dxµ∂µ because the curvature
term, owing its origin to the 2-form F (2) = dA(1), is constructed from it and the 1-form
connection A(1) = dxµAµ. (iii) One can obtain the on-shell (�C = �C̄ = 0) nilpotent
(s̃2

(a)b = 0) (anti-)BRST symmetry transformations s̃(a)b for the above theory from (2.4), by
the substitution B = −(∂ · A), as given below:

s̃bAµ = ∂µC s̃bC = 0 s̃bC̄ = −i(∂ · A) s̃bφ = −ieCφ

s̃bφ
∗ = +ieφ∗C s̃bE = 0 s̃bB = 0 s̃b(∂ · A) = �C

s̃abAµ = ∂µC̄ s̃abC̄ = 0 s̃abC = +i(∂ · A) s̃abφ = −ieC̄φ

s̃abφ
∗ = +ieφ∗C̄ s̃abB = 0 s̃abE = 0 s̃ab(∂ · A) = �C̄.

(2.5)

The above local, infinitesimal, anticommuting and on-shell nilpotent transformations are the
symmetry transformations for the following Lagrangian density

L̃b = − 1
4FµνFµν + ∂µφ∗∂µφ − ieAµ[φ∗∂µφ − φ∂µφ∗] + e2A2φ∗φ

−V (φ∗φ) − 1
2 (∂ · A)2 − i∂µC̄∂µC (2.6)

which is derived from (2.3) by the substitution B = −(∂ · A). (iv) In general, the above
transformations can be concisely expressed in terms of the generic fields �(x), �̃(x) and the
conserved charges Q(a)b, Q̃(a)b, as

sr�(x) = −i[�(x),Qr ]± s̃r �̃(x) = −i[�̃(x), Q̃r ]± r = b, ab (2.7)

where the local generic fields � = Aµ,C, C̄, B, φ, φ∗ and �̃ = Aµ,C, C̄, φ, φ∗ are the
fields of the Lagrangian densities (2.3) and (2.6). The (+)− signs, as the subscripts on
the square bracket [ , ]±, stand for the bracket to be an (anti)commutator for �, �̃ being
(fermionic)bosonic in nature. The explicit forms of the conserved, anticommuting and
nilpotent (anti-)BRST charges Qr, Q̃r , (r = b, ab) are not required for our present discussion
but can be derived for the symmetry transformations (2.4) and (2.5) (Noether theorem).

3. On-shell nilpotent symmetries: superfield formalism

In this section, we first focus on the derivation of the on-shell nilpotent BRST symmetry
transformations for all the fields and, later on, we derive the anti-BRST symmetry
transformations for all the fields by invoking the potential and power of specific restrictions on
the chiral and anti-chiral superfields (defined on the (4, 1)-dimensional super sub-manifolds
of the general (4, 2)-dimensional supermanifold), respectively.

3.1. On-shell nilpotent BRST symmetries: chiral superfields

To obtain the on-shell nilpotent BRST symmetry s̃b transformations (2.5) for the basic fields
of the Lagrangian density (2.6), first of all, we generalize the 4D basic fields Aµ,C, C̄, φ, φ∗

to the corresponding chiral (θ = 0) superfields defined on the (4, 1)-dimensional super sub-
manifold of the general (4, 2)-dimensional supermanifold. These chiral superfields can be
expanded in terms of the basic fields and some secondary fields (e.g. Rµ,B1, B2, f1, f

∗
2 ) as

B(c)
µ (x, θ̄) = Aµ(x) + θ̄Rµ(x) F (c)(x, θ̄ ) = C(x) + iθ̄B1(x)

F̄ (c)(x, θ̄ ) = C(x) + iθ̄B2(x) �(c)(x, θ̄ ) = φ(x) + iθ̄f1(x)

�∗
(c)(x, θ̄ ) = φ∗(x) + iθ̄f ∗

2 (x).

(3.1)
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The noteworthy points, at this stage, are as follows.

(i) The chiral superfields Bµ,�,�∗ are bosonic (i.e. (Bµ)2 �= 0, (�)2 �= 0, (�∗)2 �= 0) in
nature whereas the superfieldsF, F̄ are fermionic (i.e.F2 = 0, (F̄)2 = 0,FF̄+F̄F = 0).

(ii) In the limit θ̄ → 0, one retrieves the basic fields of the Lagrangian density (2.6).
(iii) The number of fermionic fields C, C̄, f1, f

∗
2 , Rµ do match with the number of bosonic

fields B1, B2, φ, φ∗, Aµ on the right-hand side of the above super expansions.
(iv) All the fields, on the rhs of the above expansion, are function of the 4D coordinates xµ

only because they have been expanded along the θ̄ -direction of the super sub-manifold.

The following gauge (i.e. BRST) invariant restriction5 on the chiral superfields φ(c)(x, θ̄ )

and φ∗
(c)(x, θ̄ ) (defined on the (4, 1)-dimensional chiral super sub-manifold of the general

(4, 2)-dimensional supermanifold), namely;

�∗
(c)(x, θ̄ )D(c)D(c)�(c)(x, θ̄ ) = φ∗(x)DDφ(x) (3.2)

leads to the derivation of all the on-shell nilpotent BRST transformations s̃b quoted in (2.5). In
the above, the covariant derivative Dφ(x) = (d + ieA(1))φ(x) ≡ dxµ(∂µ + ieAµ)φ(x) where
the exterior derivative d = dxµ∂µ and 1-form connection A(1) = dxµAµ. These quantities,
defined on the ordinary 4D spacetime manifold, are generalized to the (4, 1)-dimensional
chiral super sub-manifold of the general (4, 2)-dimensional supermanifold, as

D(c) = (
d̃(c) + ieÃ(1)

(c)

) ≡ dxµ(∂µ + ieB(c)
µ ) + dθ̄ (∂θ̄ + ieF (c))

d̃(c) = dxµ∂µ + dθ̄∂θ̄ ≡ dZM
(c)∂

(c)
M Ã

(1)

(c) = dZM
(c)A

(c)
M ≡ dxµB(c)

µ + dθ̄F (c)
(3.3)

where ZM
(c) = (xµ, θ̄) is the chiral superspace variable, ∂

(c)
M is the chiral partial derivative and

A
(c)
M = (

B(c)
µ ,F (c)

)
is the chiral supermultiplet. The rhs of (3.2) leads to the definition of the

ordinary 2-form F (2) (as well as the field strength tensor Fµν) as

φ∗(x)DDφ(x) = ieφ∗(x)(F (2))φ(x) ≡ 1

2!
(dxµ ∧ dxν)φ∗(x)(Fµν)φ(x). (3.4)

It is straightforward to check that the above quantity is a U(1) gauge (i.e. BRST) invariant
quantity because s̃bφ = −ieCφ, s̃bFµν = 0, s̃bφ

∗ = +ieφ∗C ⇒ s̃b(φ
∗Fµνφ) = 0.

The lhs of the gauge invariant restriction (3.2) would yield the coefficients of the 2-form
differentials (dxµ ∧ dxν), (dxµ ∧ dθ̄ ), (dθ̄ ∧ dθ̄ ). It is evident, on the other hand, that the rhs
of the restriction yields only the coefficients of (dxµ ∧ dxν) (cf (3.4)). The expanded version
of the lhs of the restriction in (3.2) is

(dxµ ∧ dxν)�∗
(c)(x, θ̄ )

[(
∂µ + ieB(c)

µ

)(
∂ν + ieB(c)

ν

)]
�(c)(x, θ̄ ) − (dθ̄ ∧ dθ̄ )

�∗
(c)(x, θ̄ )

[
(∂θ̄ + ieF (c))(∂θ̄ + ieF (c))

]
�(c)(x, θ̄ ) + (dxµ ∧ dθ̄ )

�∗
(c)(x, θ̄ )

[(
∂µ + ieB(c)

µ

)(
∂θ̄ + ieF (c)

) − (∂θ̄ + ieF (c))
(
∂µ + ieB(c)

µ

)]
�(c)(x, θ̄ ).

(3.5)

It is obvious that the coefficients of the 2-form differentials (dθ̄ ∧ dθ̄ ), (dxµ ∧ dθ̄ ) would be
set equal to zero to maintain the sanctity of (3.2). Such an operation on the coefficient of the
former, leads to

−ie�∗
(c)(x, θ̄ )(∂θ̄F (c))�(c)(x, θ̄ ) = 0. (3.6)

5 It will be noted that there exists another gauge (i.e. the on-shell nilpotent BRST) invariant restriction on
the chiral superfields defined on the (4, 1)-dimensional chiral super sub-manifold (of the general (4, 2)-
dimensional supermanifold) that also leads to the derivation of the on-shell nilpotent BRST transformations s̃b

of (2.5). This restriction is �c(x, θ̄) ˜̄D(c)
˜̄D(c)�

∗
(c)(x, θ̄ ) = φ(x)D̄D̄φ∗(x) where D̄φ∗ = dxµ(∂µ − ieAµ)φ∗ and

˜̄D(c) = dxµ(∂µ − ieB(c)
µ ) + dθ̄(∂θ̄ − ieF (c)). It is evident that the rhs of this restriction is −ieφ(x)F (2)φ∗(x). This is

a gauge (i.e. BRST) invariant quantity because s̃b(φFµνφ
∗) = 0 as can be seen by exploiting the on-shell nilpotent

BRST symmetry transformations (2.5).
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For e �= 0,�(c) �= 0,�∗
(c) �= 0, we obtain ∂θ̄F (c) = 0 which implies B1(x) = 0 in the

expansion of F (c)(x, θ̄ ) in (3.1). This shows that the reduced form (i.e. F (c)(x, θ̄ ) →
F (c)

(r) (x, θ̄ )) of the expansion for the fermionic chiral superfieldF (c)(x, θ̄ ) isF (c)

(r) (x, θ̄ ) = C(x).
This leads to primarily a pair of consequences. First, to maintain the sanctity of the restriction
(3.2), the chiral superfield F (c)(x, θ̄ ) becomes a local ordinary 4D field C(x). Second, it
implies that the on-shell nilpotent BRST transformations for the ghost field C(x) is zero (i.e.
F (c)

(r) (x, θ̄ ) = C(x)+ θ̄ (s̃bC(x))). Setting the coefficient of (dxµ∧dθ̄ ) equal to zero, ultimately,
implies the following relationship between the chiral superfields:

∂µF (c)

(r) = ∂θ̄B(c)
µ ⇒ Rµ(x) = ∂µC(x) (3.7)

when e �= 0,�(c) �= 0,�∗
(c) �= 0. Thus, the reduced form (i.e. B(c)

µ (x, θ̄) → B(c)

µ(r)(x, θ̄ )) of
the bosonic superfield, after the application of the restriction (3.2), becomes

B(c)

µ(r)(x, θ̄ ) = Aµ(x) + θ̄∂µC(x) ≡ Aµ(x) + θ̄ (s̃bAµ(x)). (3.8)

The above equation demonstrates the derivation of the on-shell nilpotent BRST symmetry
transformation for the gauge field Aµ within the framework of superfield formalism.

Finally, we equate the coefficient of (dxµ ∧ dxν) from the lhs and rhs of the gauge (i.e.
BRST) invariant restriction (3.2). The precise form of this equality is
1
2 ie(dxµ ∧ dxν)�∗

(c)(x, θ̄ )
(
∂µB(c)

ν(r) − ∂νB(c)

µ(r)

)
�(c)(x, θ̄ )

= 1
2 ie(dxµ ∧ dxν)φ∗(x)(∂µAν − ∂νAµ)φ(x). (3.9)

Using (3.8), it is straightforward to note that ∂µB(c)

ν(r) − ∂νB(c)

µ(r) = ∂µAν − ∂νAµ. Ultimately,
the above equality in (3.9) reduces to the following form6:

�∗
(c)(x, θ̄ )�(c)(x, θ̄ ) = φ∗(x)φ(x). (3.10)

The above simplicity occurs because of the Abelian nature of the gauge theory under
consideration. The same does not hold good for the non-Abelian interacting gauge theory
where the gauge fields are group valued and, therefore, noncommutative in nature (see, e.g.,
[19] for details). The substitution of the expansions in (3.1) for the chiral superfields on the
lhs of (3.10) leads to the following condition:

φ∗(x)f1(x) + f ∗
2 (x)φ(x) = 0. (3.11)

One of the simplest solutions to the above condition is the case where f1(x) is proportional
to the basic field φ(x) and f ∗

2 (x) is that of the 4D field φ∗(x). However, it should be noted
that the secondary fields f1(x) and f ∗

2 (x) are fermionic in nature whereas the complex scalar
fields φ(x) and φ∗(x) are bosonic. For the precise value of the equality, one of the interesting
choices (that makes sense) is

f1(x) = −eC(x)φ(x) f ∗
2 (x) = +eφ∗(x)C(x) (3.12)

where field C(x) is the fermionic ghost field of the theory. This field has been brought in
to make the above choice fermionic in nature for f1(x) and f ∗

2 (x). The above choices, in
some sense, are unique because the presence of the fermionic ghost field C(x) is the only
appropriate possibility in (3.12). The substitution of the above values into the super expansion
(3.1) leads to the derivation of s̃b (cf (2.5)) for the matter fields as given below

�
(r)

(c)(x, θ̄ ) = φ(x) + θ̄ (−ieC(x)φ(x)) ≡ φ(x) + θ̄ (s̃bφ(x))

�
∗(r)

(c) (x, θ̄ ) = φ∗(x) + θ̄ (+ieφ∗(x)C(x)) ≡ φ∗(x) + θ̄ (s̃bφ
∗(x)).

(3.13)

6 It will be noted that the condition in (3.10) is a completely new relationship which can never originate from the
horizontality condition alone. In fact, the horizontality condition, present in the usual superfield formalism [1–7],
does not shed any light on the derivation of the (anti-)BRST symmetry transformations for the matter fields of a given
interacting gauge theory, as pointed out earlier.
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It should be emphasized that, so far, we have not been able to determine the exact value of
the secondary field B2(x) in terms of the basic fields of the theory by exploiting the gauge
(i.e. BRST) invariant restriction (3.2). At this stage, the equation of motion B = −(∂ · A)

derived from (2.1) (or (2.3)) comes to our rescue if we identify7 the secondary field B2(x)

with the Nakanishi–Lautrup auxiliary field B(x). With this input, we obtain the on-shell
nilpotent symmetry transformations for all basic fields of the theory as the expansion (3.1) can
be re-expressed, in terms of s̃b (cf (2.5)), as

B(c)

µ(r)(x, θ̄ ) = Aµ(x) + θ̄ (s̃bAµ(x)) F (c)

(r) (x, θ̄ ) = C(x) + θ̄ (s̃bC(x))

F̄ (c)

(r) (x, θ̄ ) = C(x) + θ̄ (s̃bC̄(x)) �
(r)

(c)(x, θ̄ ) = φ(x) + θ̄ (s̃bφ(x))

�
∗(r)

(c) (x, θ̄ ) = φ∗(x) + θ̄ (s̃bφ
∗(x)).

(3.14)

The above equation provides the geometrical interpretation for the on-shell nilpotent BRST
transformation s̃b (and the corresponding generator Q̃b) as the translational generator along
the Grassmannian direction θ̄ of the chiral super sub-manifold. In other words, the translation
of the (4, 1)-dimensional chiral superfields along the θ̄ -direction of the chiral super sub-
manifold results in the internal on-shell nilpotent BRST symmetry transformations s̃b for the
corresponding basic 4D local fields of the Lagrangian density (2.6).

3.2. On-shell nilpotent anti-BRST symmetries: anti-chiral superfields

We invoke here the anti-chiral (i.e. θ̄ = 0) superfields B(ac)
µ ,F (ac), F̄ (ac), �(ac),�

∗
(ac),

corresponding to the basic fields Aµ,C, C̄, φ, φ∗ of the 4D Lagrangian density (2.6), for
the derivation of the anti-BRST symmetry transformations of (2.5). We expand the above
superfields along the θ -direction of the (4, 1)-dimensional anti-chiral super sub-manifold.
These expansions are

B(ac)
µ (x, θ) = Aµ(x) + θR̄µ(x) F (ac)(x, θ) = C(x) + iθB̄1(x)

F̄ (ac)(x, θ) = C(x) + iθB̄2(x) �(ac)(x, θ) = φ(x) + iθf̄ 1(x)

�∗
(ac)(x, θ) = φ∗(x) + iθf̄ ∗

2(x)

(3.15)

where the basic fields the Lagrangian density (2.6) are obtained in the limit θ → 0. In the above
expansion, the fields R̄µ, B̄1, B̄2, f̄ 1, f̄

∗
2 are the secondary fields which would be determined

in terms of the basic fields of (2.6) by the imposition of the following gauge (i.e. (anti-)BRST)
invariant restriction8 on the anti-chiral superfields defined on the (4, 1)-dimensional super
sub-manifold of the general (4, 2)-dimensional supermanifold, namely;

�∗
(ac)(x, θ)D̃(ac)D̃(ac)�(ac)(x, θ) = φ∗(x)DDφ(x) (3.16)

where the anti-chiral covariant derivative D̃(ac), on the (4, 1)-dimensional anti-chiral super
sub-manifold, is defined as

D̃(ac) = d̃(ac) + ieÃ(1)

(ac) ≡ dxµ
(
∂µ + ieB(ac)

µ

)
+ dθ(∂θ + ieF̄ (ac)). (3.17)

Here d̃(ac) = dxµ∂µ + dθ∂θ is the anti-chiral version of the super exterior derivative
d̃ = dxµ∂µ + dθ∂θ + dθ̄∂θ̄ and Ã

(1)

(ac) = dxµB(ac)
µ + dθF̄ (ac) is the anti-chiral limit of the super

7 We lay stress, at this point of our argument, that we shall remain consistent with this identification (i.e.
B2(x) = B(x) ≡ −(∂ · A)) throughout the body of our present text.
8 It is interesting to note that the combination �(ac)(x, θ) ˜̄D(ac)

˜̄D(ac)�
∗
(ac)(x, θ) = φ(x)D̄D̄φ∗(x) is also a gauge

(i.e. (anti-)BRST) invariant condition that could be imposed on the anti-chiral superfields of the (4, 1)-dimensional
super sub-manifold. This restriction also leads to the derivation of the on-shell nilpotent anti-BRST symmetry
transformations for all the fields of the theory. The computational steps are similar to those connected with the present
condition in (3.16).
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1-form connection Ã(1) = dxµBµ(x, θ, θ̄ ) + dθF̄(x, θ, θ̄ ) + dθ̄F(x, θ, θ̄ ) that would be
exploited in the next section (cf section 4) for the derivation of the off-shell nilpotent
(anti-)BRST symmetry transformations for all the fields of the theory. It is straightforward
to note that the rhs of (3.16) defines the 2-form F (2) as ieφ∗(x)F (2)φ(x) ≡ 1

2 ie(dxµ ∧
dxν)φ∗(x)Fµνφ(x).

Let us focus on the explicit form of the lhs of (3.16). In terms of the 2-form differentials
(dxµ ∧ dxν), (dxµ ∧ dθ) and (dθ ∧ dθ), the lhs can be written in its most lucid form as

(dxµ ∧ dxν)�∗
(ac)(x, θ)

[(
∂µ + ieB(ac)

µ

)(
∂ν + ieB(ac)

ν

)]
�(ac)(x, θ) − (dθ ∧ dθ)

×�∗
(ac)(x, θ)[(∂θ + ieF̄ (ac))(∂θ + ieF̄ (ac))]�(ac)(x, θ) + (dxµ ∧ dθ)�∗

(ac)(x, θ)

×[(
∂µ + ieB(ac)

µ

)
(∂θ + ieF̄ (ac)) − (∂θ + ieF̄ (ac))

(
∂µ + ieB(ac)

µ

)]
�(ac)(x, θ).

(3.18)

It is evident that the coefficient of (dθ ∧ dθ) of the above equation would be set equal to zero
because there is no such term on the rhs of (3.16). The simplified version of the consequence
of this statement can be expressed as

−ie(dθ ∧ dθ)�∗
(ac)(x, θ)(∂θ F̄ (ac))�(ac)(x, θ) = 0. (3.19)

For e �= 0,� �= 0,�∗ �= 0, we obtain the solution ∂θ F̄ (ac) = 0. This leads to B̄2 = 0 in the
expansion of F̄ (ac)(x, θ). Thus, the reduced form (i.e. F̄ (ac) → F̄ (ac)

(r) ) of this superfield can
be re-expressed, in terms of the on-shell nilpotent operator s̃ab, as

F̄ (ac)

(r) (x, θ) = C̄(x) + 0 ≡ C̄(x) + θ(s̃abC̄(x)). (3.20)

The above equation demonstrates the explicit derivation of the anti-BRST symmetry
transformations for the anti-ghost field as s̃abC̄(x) = 0.

We now collect the coefficient of the 2-form differential (dxµ ∧ dθ) from equation (3.18).
In its simple form, it looks as follows:

ie(dxµ ∧ dθ)�∗
(ac)(x, θ)

(
∂µF̄ (ac)

(r) − ∂θB(ac)
µ

)
�(ac)(x, θ) = 0. (3.21)

It is obvious that for e �= 0,�(ac) �= 0,�∗
(ac) �= 0, we obtain the relationship ∂µF̄ (ac)

(r) = ∂θB(ac)
µ

which implies that R̄µ(x) = ∂µC̄(x). Thus, the reduced form (i.e. B(ac)
µ (x, θ) → B(ac)

µ(r)(x, θ))
of the bosonic superfield (corresponding to the gauge field Aµ) is

B(ac)

µ(r)(x, θ) = Aµ(x) + θ∂µC̄(x) ≡ Aµ(x) + θ(s̃abAµ(x)). (3.22)

The above equation establishes the exact derivation of the nilpotent anti-BRST symmetry
transformation for the gauge field Aµ in the framework of the present superfield formalism.
Collecting the coefficient of (dxµ ∧ dxν) from both the sides of the restriction (3.16), we
obtain the following relationship:
1
2 ie(dxµ ∧ dxν)�∗

(ac)(x, θ)
(
∂µB(ac)

ν(r) − ∂νB(ac)

µ(r)

)
�(ac)(x, θ)

= 1
2 ie(dxµ ∧ dxν)φ∗(x)(∂µAν − ∂νAµ)φ(x). (3.23)

Taking the help of (3.22), it is evident that ∂µB(ac)

ν(r) − ∂νB(ac)

µ(r) = ∂µAν − ∂νAµ. Thus,
the simplest form of the condition in (3.23), that emerges after a bit of simple algebra, is
�∗

(ac)(x, θ)�(ac)(x, θ) = φ∗(x)φ(x). It will be noted that this new relation is a gauge (i.e.
BRST) invariant relation and it cannot emerge from the usual horizontality condition. Inserting
the expansion of (3.15) for the anti-chiral matter fields, we obtain the following relationship
among the basic fields φ, φ∗ and the secondary fermionic fields f̄ 1 and f̄ ∗

2, namely;

φ∗(x)f̄ 1(x) + f̄ ∗
2(x)φ(x) = 0. (3.24)

A close look at the above condition provides us the clue to choose the secondary fermionic
fields f̄ 1 proportional to φ and f̄ ∗

2 proportional to φ∗. For the exact equality, we bring in the
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anti-ghost field C̄(x) of the theory which allows us to choose the following:

f̄ 1(x) = −eC̄(x)φ(x) f̄ ∗
2(x) = +eφ∗(x)C̄(x). (3.25)

The insertion of the above values into the expansion (3.15) leads to the exact derivation of
the anti-BRST symmetry transformations for the matter fields in the sense that the reduced
form of the matter fields become: �

(r)

(ac)(x, θ) = φ(x) + θ(s̃abφ(x)),�
∗(r)

(ac)(x, θ) = φ∗(x) +
θ(s̃abφ

∗(x)) in terms of the on-shell nilpotent anti-BRST symmetry transformations.
So far, we have not been able to determine the secondary field B̄1(x) of the expansion

of F (ac)(x, θ) (cf (3.15) in terms of the basic fields of the Lagrangian density (2.6). In fact,
B̄1(x) can be identified with the Nakanishi–Lautrup auxiliary field B(x) with a minus sign (i.e.
B̄1(x) = −B(x)). The reason behind this choice with a minus sign will become clear in the
next section. We shall be consistent, however, with this specific choice throughout the body of
our present text. At this stage, once again, the equation of motion B(x) = −(∂ · A)(x)

comes to our help. Thus, the exact expression for the secondary field B̄1(x) becomes
B̄1(x) = +(∂ · A)(x). The insertion of this value in the expansion of F (ac)(x, θ) (cf (3.15))
reduces this superfield to the form F (ac)

(r) (x, θ) = C(x) + iθ(∂ · A) ≡ C(x) + θ(s̃abC(x)).
Ultimately, all the superfields in their reduced form (with the inputs from the on-shell nilpotent
anti-BRST transformations (2.5)) can be re-expressed as

B(ac)

µ(r)(x, θ) = Aµ(x) + θ(s̃abAµ(x)) F (ac)

(r) (x, θ) = C(x) + θ(s̃abC(x))

F̄ (ac)

(r) (x, θ) = C(x) + θ(s̃abC̄(x)) �
(r)

(ac)(x, θ) = φ(x) + θ(s̃abφ(x))

�
∗(r)

(ac)(x, θ) = φ∗(x) + θ(s̃abφ
∗(x)).

(3.26)

The above set of expansions provides the geometrical origin and interpretation for the on-
shell nilpotent anti-BRST symmetry transformation (and corresponding generator Q̃ab) as the
translational generator along the θ -direction of the anti-chiral super sub-manifold.

4. Off-shell nilpotent (anti-)BRST symmetries: superfield formalism

To obtain the off-shell nilpotent symmetry transformations (2.4) for all the fields of the theory
in superfield formalism, we define the 4D ordinary interacting U(1) gauge theory with complex
scalar fields on a (4, 2)-dimensional supermanifold parametrized by the general superspace
coordinate ZM = (xµ, θ, θ̄ ) where xµ (µ = 0, 1, 2, 3) are the four even spacetime coordinates
and θ, θ̄ are a pair of odd elements of a Grassmann algebra. On this supermanifold, one can
define a set of superfields corresponding to the basic fields of the theory that are present in
the Lagrangian density (2.6). The above superfields can be expanded in terms of these basic
fields Aµ,C, C̄, φ, φ∗ and some secondary fields (along the Grassmannian directions of the
(4, 2)-dimensional supermanifold) as [3, 13, 14]

Bµ(x, θ, θ̄ ) = Aµ(x) + θR̄µ(x) + θ̄Rµ(x) + iθ θ̄Sµ(x)

F(x, θ, θ̄ ) = C(x) + iθB̄1(x) + iθ̄B1(x) + iθ θ̄s(x)

F̄(x, θ, θ̄ ) = C̄(x) + iθB̄2(x) + iθ̄B2(x) + iθ θ̄ s̄(x)

�(x, θ, θ̄ ) = φ(x) + iθf̄ 1(x) + iθ̄f1(x) + iθ θ̄b(x)

�∗(x, θ, θ̄ ) = φ∗(x) + iθf̄ ∗
2(x) + iθ̄f ∗

2 (x) + iθ θ̄b∗(x).

(4.1)

It is straightforward to note, in the above super expansion, that the local fields Rµ(x), R̄µ(x),

C(x), C̄(x), s(x), s̄(x), f1(x), f̄ 1(x), f ∗
2 (x), f̄ ∗

2(x) are fermionic (anticommuting) and
Aµ(x), Sµ(x), B1(x), B̄1(x), B2(x), B̄2(x) are bosonic (commuting) in nature. In the above
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expansion, the bosonic- and fermionic degrees of freedom match and, in the limit: θ, θ̄ → 0,
we get back our basic fields Aµ,C, C̄, φ, φ∗ of the Lagrangian density (2.6).

To obtain the exact expressions for the secondary fields in terms of the basic fields
(and auxiliary fields) of the theory, we invoke the following gauge (i.e. (anti-)BRST) invariant
restriction on the suitable superfields of the general (4, 2)-dimensional supermanifold, namely;

�∗(x, θ, θ̄ )D̃D̃�(x, θ, θ̄ ) = φ∗(x)DDφ(x) (4.2)

where the super covariant derivative D̃ is defined, in terms of the super exterior derivative
d̃ = dxµ∂µ + dθ∂θ + dθ̄∂θ̄ and the 1-form super connection Ã(1) = dxµBµ + dθF̄ + dθ̄F , as

D̃ = d̃ + ieÃ(1) ≡ dxµ(∂µ + ieBµ) + dθ(∂θ + ieF̄) + dθ̄ (∂θ̄ + ieF). (4.3)

It will be noted that, in the previous section, we have taken the limiting cases (i.e. θ → 0 and
θ̄ → 0) of the above definition for the chiral and anti-chiral super sub-manifolds. It is evident
that the rhs of (4.2) (i.e. ieφ∗(x)F (2)φ(x)) is a gauge (i.e. (anti-)BRST) invariant quantity
on the supermanifold because s(a)b(φ

∗F (2)φ) = 0 (as is clear from the off-shell nilpotent
(anti-)BRST transformations s(a)b quoted in equation (2.4)).

For our computations, it is important to express the lhs of the gauge invariant restriction
(4.2) in terms of the explicit 2-form differentials (dxµ ∧ dxν), (dθ ∧ dθ), (dθ̄ ∧ dθ̄), (dθ ∧
dθ̄ ), (dxµ ∧ dθ) and (dxµ ∧ dθ̄ ). This is required so that we can compare the rhs with the
lhs of (4.2). All the terms, corresponding to these differentials together with their coefficients
from the lhs of the restriction (4.2), are explicitly written as follows:

(dxµ ∧ dxν)�∗(∂µ + ieBµ)(∂ν + ieBν)� − (dθ ∧ dθ)�∗(∂θ + ieF̄)(∂θ + ieF̄)�

− (dθ̄ ∧ dθ̄ )�∗(∂θ̄ + ieF)(∂θ̄ + ieF)� − (dθ ∧ dθ̄ )�∗

× [(∂θ̄ + ieF)(∂θ + ieF̄) + (∂θ + ieF̄)(∂θ̄ + ieF)]�

+ (dxµ ∧ dθ)�∗[(∂µ + ieBµ)(∂θ + ieF̄) − (∂θ + ieF̄)(∂µ + ieBµ)]�

+ (dxµ ∧ dθ̄ )�∗[(∂µ + ieBµ)(∂θ̄ + ieF) − (∂θ̄ + ieF)(∂µ + ieBµ)]�. (4.4)

For algebraic convenience, first of all, it is useful to set equal to zero the coefficients of the
differentials (dθ ∧ dθ), (dθ̄ ∧ dθ̄ ) and (dθ ∧ dθ̄ ) as these are not present on the rhs of the
restriction (4.2). The outcome of the above algebraic conditions are

−ie(dθ ∧ dθ)�∗(∂θ F̄)� = 0 − ie(dθ̄ ∧ dθ̄ )�∗(∂θ̄F)� = 0

−ie(dθ ∧ dθ̄ )�∗(∂θF + ∂θ̄ F̄)� = 0.
(4.5)

For e �= 0,� �= 0,�∗ �= 0, we obtain the following solutions:

∂θ F̄ = 0 ⇒ B̄2(x) = 0 s̄(x) = 0

∂θ̄F = 0 ⇒ B1(x) = 0 s(x) = 0,

∂θF + ∂θ̄ F̄ = 0 ⇒ B2(x) + B̄1(x) = 0.

(4.6)

The insertions of these values into the super expansion of F and F̄ (along with our earlier
identifications: B2(x) = B(x), B̄1(x) = −B(x)), imply the following reduced forms (i.e.
F(x, θ, θ̄ ) → F(r)(x, θ), F̄(x, θ, θ̄ ) → F̄(r)(x, θ̄ )) of the superfield expansions:

F(r)(x, θ) = C(x) − iθB(x) ≡ C(x) + θ(sabC(x))

F̄(r)(x, θ̄ ) = C̄(x) + iθ̄B(x) ≡ C̄(x) + θ̄ (sbC̄(x)).
(4.7)

The above equation imply (i) the derivation of the off-shell nilpotent (anti-)BRST symmetry
transformations for the ghost and anti-ghost fields of the theory under consideration, (ii) the
characteristic features of the superfields F̄ and F as the chiral and anti-chiral in nature after
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the application of the restriction (4.2), and (iii) the choices made in the previous section are
correct because it can be seen that if B2(x) = B(x), the relation B2(x) + B̄1(x) = 0 implies
that B̄1(x) = −B(x). These results, which have been discussed above, are exactly the same
as that derived due to the application of the horizontality condition of the usual superfield
formalism on the (4, 2)-dimensional supermanifold (see, e.g., [3, 8, 9] for details).

We now collect the coefficients of the 2-form differentials (dxµ ∧ dθ) and (dxµ ∧ dθ̄ ).
These are, naturally, to be set equal to zero. The consequences are listed below:

+ie(dxµ ∧ dθ)�∗(∂µF̄(r) − ∂θBµ)� = 0

+ie(dxµ ∧ dθ̄ )�∗(∂µF(r) − ∂θ̄Bµ)� = 0.
(4.8)

It will be noted here that the reduced values (4.7) of the superfields F and F̄ have been taken
into account for the above computations. For e �= 0,� �= 0,�∗ �= 0, we obtain the following
explicit and precise solutions to the above restrictions:

Rµ(x) = ∂µC(x) R̄µ(x) = ∂µC̄(x) Sµ(x) = ∂µB(x). (4.9)

The insertions of the above values into the expansion of Bµ on the (4, 2)-dimensional
supermanifold, leads to the following reduced form of this superfield, namely;

Bµ(r)(x, θ, θ̄ ) = Aµ(x) + θ(sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbsabAµ(x)). (4.10)

The above equation demonstrates the exact derivation of the off-shell nilpotent (anti-)BRST
symmetry transformations s(a)b for the U(1) gauge field Aµ(x). The above result is also the
same as that derived due to the application of the horizontality condition alone.

We concentrate on the comparison of the coefficients of the 2-form differentials
(dxµ ∧ dxν), constructed with the help of spacetime variables alone, from the lhs and rhs
of (4.2). It should be noted that we shall be taking into account the reduced form of the
superfield Bµ in our present computation. Ultimately, we obtain the following relationship:
1
2 ie(dxµ ∧ dxν)�∗(x, θ, θ̄ )(∂µBν(r)(x, θ, θ̄ ) − ∂νBµ(r)(x, θ, θ̄ ))�(x, θ, θ̄ )

= 1
2 ie(dxµ ∧ dxν)φ∗(x)(∂µAν(x) − ∂νAµ(x))φ(x). (4.11)

It can be checked that ∂µBν(r) − ∂νBµ(r) = ∂µAν − ∂νAµ. Furthermore, the Abelian nature of
all the fields in the above equation allows us to cancel the gauge field part from the lhs and rhs
of (4.11). This entails upon the above equation to reduce to

�∗(x, θ, θ̄ )�(x, θ, θ̄ ) = φ∗(x)φ(x) (4.12)

where we have taken e �= 0, Aµ �= 0 into consideration. We lay emphasis on the fact that
the new relationship (4.12) is a gauge invariant condition which cannot be obtained from the
application of the horizontality condition alone. The substitution of the expansions for the
matter superfields (cf (4.1)) leads to the following form for the lhs:

φ∗φ + iθ(φ∗f̄ 1 + f̄ ∗
2φ) + iθ̄ (φ∗f1 + f ∗

2 φ) + iθ θ̄(φ∗b + b∗φ + if ∗
2 f̄ 1 − if̄ ∗

2f1). (4.13)

Equating the above expressions with the rhs of (4.12) leads to the following conditions:

φ∗f̄ 1 + f̄ ∗
2φ = 0 φ∗f1 + f ∗

2 φ = 0 φ∗b + b∗φ + if ∗
2 f̄ 1 − if̄ ∗

2f1 = 0. (4.14)

It will be noted that, in the above, the coefficients of the θ, θ̄ and θ θ̄-directions of the above
expansions, have been set equal to zero separately and independently. At this juncture, our
knowledge of the previous section comes to our help. The following interesting choices

f1 = −eCφ f̄ 1 = −eC̄φ f ∗
2 = +eφ∗C f̄ ∗

2 = +eφ∗C̄

b = −ie(B + eC̄C)φ b∗ = +ieφ∗(B + eCC̄)
(4.15)
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satisfy all the above conditions quoted in (4.14). The logical arguments in deducing the above
solutions are the same as in the previous section. The insertions of these values into the super
expansion (4.1) for the matter superfields lead to the following reduced form

�(r)(x, θ, θ̄ ) = φ(x) + θ(sabφ(x)) + θ̄ (sbφ(x)) + θ θ̄(sbsabφ(x))

�∗(r)(x, θ, θ̄ ) = φ∗(x) + θ(sabφ
∗(x)) + θ̄ (sbφ

∗(x)) + θ θ̄(sbsabφ
∗(x)).

(4.16)

The above equation demonstrates explicitly the derivation of the off-shell nilpotent and
anticommuting (anti-)BRST symmetry transformations s(a)b for the matter fields of the theory
in the framework of the augmented superfield formulation.

Finally, the reduced form of the expansions, quoted for all the superfields in (4.1), can
be re-expressed in terms of the off-shell nilpotent (anti-)BRST symmetry transformations of
(2.4) in the following uniform fashion for all the superfields of the theory:

Bµ(r)(x, θ, θ̄ ) = Aµ(x) + θ(sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbsabAµ(x))

F(r)(x, θ, θ̄ ) = C(x) + θ(sabC(x)) + θ̄ (sbC(x)) + θ θ̄(sbsabC(x))

F̄(r)(x, θ, θ̄ ) = C̄(x) + θ(sabC̄(x)) + θ̄ (sbC̄(x)) + θ θ̄(sbsabC̄(x))

�(r)(x, θ, θ̄ ) = φ(x) + θ(sabφ(x)) + θ̄ (sbφ(x)) + θ θ̄(sbsabφ(x))

�∗(r)(x, θ, θ̄ ) = φ∗(x) + θ(sabφ
∗(x)) + θ̄ (sbφ

∗(x)) + θ θ̄(sbsabφ
∗(x)).

(4.17)

It will be noted that, in the above expansion, the trivial transformations sbC = 0, sabC̄ = 0
have been taken into account. The above form of the uniform expansion for all the superfields
leads to the geometrical as well as physical interpretation for (i) the (anti-)BRST charges
Q(a)b (and the symmetry transformations (s(a)b) they generate) as the generators (cf (2.7)) of
translations (i.e. Limθ̄→0(∂/∂θ), Limθ→0(∂/∂θ̄)) along the Grassmannian directions of the six
(4, 2)-dimensional supermanifold, (ii) the nilpotency property of the (anti-)BRST symmetry
transformations (and corresponding generators) as a couple of successive translations (i.e.
(∂/∂θ)2 = 0, (∂/∂θ̄)2 = 0) along any particular Grassmannian direction of the supermanifold,
(iii) the anticommutativity property sbsab+sabsb = 0 (and/or QbQab+QabQb = 0) as a similar
kind of relationship (i.e. (∂/∂θ)(∂/∂θ̄) + (∂/∂θ̄)(∂/∂θ) = 0) existing between the translation
generators along the θ and θ̄ -directions of the supermanifold, and (iv) the internal (anti-)
BRST symmetry transformations for the 4D ordinary local field of a Lagrangian density as
the translation of the corresponding superfield along the Grassmannian direction(s) of the
supermanifold.

5. Conclusions

In our present investigation, we have provided a generalization of the celebrated horizontality
condition of the usual superfield approach to BRST formalism [1–7]. This has been done
primarily for a couple of reasons. First, as is well known, the horizontality condition on a
specifically chosen supermanifold is not a gauge (i.e. BRST) invariant restriction. Rather, it is
intrinsically a gauge covariant restriction9 because the curvature tensor of a non-Abelian gauge
theory transforms covariantly under the SU(N) gauge transformation (which is also reflected
in the corresponding BRST transformation on it). A physical quantity, however, has to be a
gauge (i.e. BRST) invariant quantity. This is why, in our present endeavour, we have chosen
the gauge invariant restrictions (cf (3.2), (3.16), (4.2) and (A.1)) on the matter superfields of

9 For an Abelian gauge theory, this restriction becomes a gauge invariant restriction. In general, this condition is a
gauge covariant restriction on the gauge superfield (defined on a suitably chosen supermanifold) and, therefore, it is
not a BRST invariant restriction on the above superfield.
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the appropriately chosen supermanifolds. Second, the horizontality condition does not shed
any light on the (anti-)BRST symmetry transformations associated with the matter fields of
a given interacting gauge theory where there is an explicit coupling between the gauge field
and matter fields. However, in our present attempt, we have chosen restrictions on the matter
superfields of the suitably chosen supermanifolds in such a way that they enable us to determine
the exact nilpotent (anti-)BRST symmetry transformations for the matter fields. Thus, our
present and earlier attempts [18, 19] do provide a theoretical basis for the generalization of
the horizontality condition of the usual superfield approach to BRST formalism.

One of the key features of our gauge (i.e. BRST) invariant restrictions is the fact that they
owe their origin to a pair of (super) covariant derivatives that operate on the matter (super) fields
in unison. This specific unity of the two (super) covariant derivatives has intimate connection
with the (super) curvature tensors of a given gauge theory. This is precisely the reason that the
geometrical interpretations of the nilpotent (anti-)BRST symmetry transformations and their
corresponding nilpotent generators, that emerge due to the application of the horizontality
condition alone, remain intact under the gauge invariant restrictions of our present endeavour.
Furthermore, it is very interesting to note that a single restriction on the matter superfields of
the supermanifold allows us to obtain all the nilpotent symmetry transformations for all the
fields of a given interacting gauge theory. Thus, our present generalization of the horizontality
condition (owing its origin to the restriction on the super gauge fields alone) is very logical,
economical and physically appealing. Our model being an interacting Abelian gauge theory,
the (super) covariant derivatives are defined only on the matter (super) fields. The above
(super) covariant derivatives do not exist for the Abelian (super) gauge as well as (super)
(anti-)ghost fields.

In our present investigation, we have concentrated on the field theoretical model of the 4D
interacting U(1) gauge theory where there is an explicit coupling between the gauge field and
complex scalar fields (and the gauge field itself). This model is interesting by itself because
it allows the inclusion of a renormalizable quartic potential that is found to be gauge (i.e.
BRST) invariant. This kind of potential cannot be included in an interacting 4D (non-)Abelian
gauge theory with the fermionic Dirac fields. Furthermore, this field theoretic model allows
discussions connected with the spontaneous symmetry breaking, Goldstone theorem, Higgs
mechanism, etc, which are very useful in the context of the gauge theory of the standard model
of electro-weak unification (see, e.g., [22–24]). Thus, to put our earlier ideas [18, 19] on a
firmer footing, it is essential to check the validity of those propositions in the context of our
present field theoretical model. It would be very interesting future endeavour to apply the ideas
of our present work and that of [18, 19] to the case of gravitational theories which resemble very
much with the non-Abelian gauge theories [22]. In fact, the idea of horizontality condition has
already been applied to gravitational theories by Delbourgo, Jarvis and Thompson (see, e.g.,
[4]). This issue is presently under investigation under our augmented superfield formalism
and our results would be reported in our future publications [25].
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Appendix

To clarify the claims made in the footnotes before equations (3.2) and (3.16), we discuss
here, in a concise fashion, the derivation of the off-shell nilpotent symmetry transformations
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from an alternate version of the restriction (4.2) imposed on the matter superfields of the
(4, 2)-dimensional supermanifold. This gauge (i.e. BRST) invariant restriction is

�(x, θ, θ̄ ) ˜̄D ˜̄D�∗(x, θ, θ̄ ) = φ(x)D̄D̄φ∗(x) (A.1)

where ˜̄D = dxµ(∂µ − ieBµ) + dθ(∂θ − ieF̄) + dθ̄ (∂θ̄ − ieF). It is evident that the rhs of the
above gauge invariant condition is − 1

2 ie(dxµ ∧ dxν)φ(x)(∂µAν − ∂νAµ)φ∗(x). To compare
this with the lhs, it is essential to expand the lhs in an explicit form as given below:

(dxµ ∧ dxν)�∗(∂µ − ieBµ)(∂ν − ieBν)� − (dθ ∧ dθ)�∗(∂θ − ieF̄)(∂θ − ieF̄)�

− (dθ̄ ∧ dθ̄ )�∗(∂θ̄ − ieF)(∂θ̄ − ieF)� − (dθ ∧ dθ̄ )�∗

× [(∂θ̄ − ieF)(∂θ − ieF̄) + (∂θ − ieF̄)(∂θ̄ − ieF)]�

+ (dxµ ∧ dθ)�∗[(∂µ − ieBµ)(∂θ − ieF̄) − (∂θ − ieF̄)(∂µ − ieBµ)]�

+ (dxµ ∧ dθ̄ )�∗[(∂µ − ieBµ)(∂θ̄ − ieF) − (∂θ̄ − ieF)(∂µ − ieBµ)]�. (A.2)

Setting, first of all, the coefficients of dθ ∧ dθ), (dθ̄ ∧ dθ̄ ) and (dθ ∧ dθ̄ ) equal to zero, we
obtain the following conditions

∂θ F̄ = 0 ⇒ B̄2(x) = 0 s̄(x) = 0

∂θ̄F = 0 ⇒ B1(x) = 0 s(x) = 0
∂θF + ∂θ̄ F̄ = 0 ⇒ B̄1(x) + B2(x) = 0

(A.3)

when e �= 0,� �= 0,�∗ �= 0. Thus, according to our earlier choice, if B2(x) = B(x)

then B̄1(x) = −B(x). Insertions of these values into the expansions in (4.1) reduce the
fermionic superfields F and F̄ to F(r) and F̄(r). Similarly, setting the coefficients of the
2-form differentials (dxµ ∧ dθ) and (dxµ ∧ dθ̄ ) equal to zero leads to the following conditions
for e �= 0,� �= 0,�∗ �= 0, namely;

∂µF̄(r) = ∂θBµ ∂µF(r) = ∂θ̄Bµ. (A.4)

In the above, we substitute the reduced forms of the fermionic superfields F and F̄ which are
exactly the same as those listed in (4.7). The resulting relations, that are found between the
secondary fields of the expansion for Bµ superfield and the basic fields (as well as the auxiliary
field), are exactly the same as those given in (4.9).

Finally, we compare the coefficients of the 2-form differentials (dxµ ∧ dxν) that emerge
from the lhs and rhs of the restriction (A.1). In its explicit form, this equality is

− 1
2 ie(dxµ ∧ dxν)�∗(x, θ, θ̄ )(∂µBν(r)(x, θ, θ̄ ) − ∂νBµ(r)(x, θ, θ̄ ))�(x, θ, θ̄ )

= − 1
2 ie(dxµ ∧ dxν)φ∗(x)(∂µAν(x) − ∂νAµ(x))φ(x) (A.5)

where Bµ(r) is the reduced form of the bosonic superfield Bµ of the expansion (4.1) where
Rµ = ∂µC, R̄µ = ∂µC̄ and Sµ = ∂µB have been substituted. One obtains, ultimately, the
same relationship between the matter superfields and ordinary matter fields as given in (4.12).
After this, all the steps of computation are the same as those given in the equations from
(4.13) till (4.17). This establishes the fact that the alternative gauge (i.e. BRST) invariant
conditions, that are mentioned in the footnotes before equations (3.2) and (3.16), are equally
useful in obtaining the nilpotent (anti-)BRST symmetry transformations for all the fields of the
interacting U(1) gauge theory where there is an explicit coupling between Aµ field and matter
fields φ and φ∗. In fact, we conclude, after some observations, that the algebraic computations
of all the steps, for the alternative versions of the gauge (i.e. BRST) invariant restrictions, are
exactly the same as those given in the body of our present text except that one has to replace
e by −e (i.e. e → −e) in all the relevant equations.
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